If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9.82x^2=200
We move all terms to the left:
9.82x^2-(200)=0
a = 9.82; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·9.82·(-200)
Δ = 7856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7856}=\sqrt{16*491}=\sqrt{16}*\sqrt{491}=4\sqrt{491}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{491}}{2*9.82}=\frac{0-4\sqrt{491}}{19.64} =-\frac{4\sqrt{491}}{19.64} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{491}}{2*9.82}=\frac{0+4\sqrt{491}}{19.64} =\frac{4\sqrt{491}}{19.64} $
| 30+12+j=90 | | 33+s=84 | | 151+d=175 | | 7x+5=14x+5 | | 5z+2=3z-1 | | 2x−1+2x=12 | | 3(m-6=-12 | | 25m−4=1 | | y/4=19 | | 1/2y-1=1/7y | | 3x-12=24-3 | | 4(3^x-1)=24 | | 4x-1=3(-1) | | X(1+2x+x+2x^2)=84 | | 42/72=12/x | | 7=9d=7d+3 | | (5^(x-1))^x=25 | | (5^(x-1)^x=25 | | 2x(x-0.5)=7 | | –4x+9=6x–1 | | Y=2x-11/2 | | 175*200=x*0.2 | | 2(5x-5)+20=4(5x+5) | | -2(1+6a)=24a+22 | | 5t*2-2t-1=0 | | 3m-2=5m-6 | | 1/2(x+8=5(x-1) | | 1/2(x+8)=5(x-1 | | (5x+11)+62=18x+4 | | 5*x/3.6=200 | | 200=5*3.6/x | | x²-3x=23 |